

Construction:	
Conductors:	Annealed copper conductor flexible class 5 acc. to VDE 0295
Insulation:	Special oil-resistant PVC compound
Core identification:	-JZ: one core green-yellow, all other cores black with continuous numbering - -OZ: all cores black with continuous numbering
Outer sheath:	Special full-polyurethane TMPU
Colour of outer sheath:	Grey RAL 7001 (available in other colours)
Taping and screening:	stranding wrapped in polyester foil, special aluminium/polyester foil and tinned copper braided screen (approx. 85% coverage)

Characteristic:	
Nominal Voltage:	$300 / 500 \mathrm{~V}$
Test voltage 50Hz:	4000 V
Maximum conductor operating temperature:	$+80^{\circ} \mathrm{C}$
Temperature range:	mobile: $-20^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ fixed: $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Insulation resistance at temperature 200 C	min. $20 \mathrm{M} \Omega \times \mathrm{km}$
Minimum bending radius:	free movement: $10 \times$ cable \varnothing fixed installation: $5 \times$ cable \varnothing
Flame propagation:	acc. to DIN VDE 0482-332-1-2, DIN EN 60332-1-2, IEC 60332-1-2
Standard length cable packing:	500 m or 1000 m on drums. Other forms of packing and delivery are available on request.

Application:

Extremely robust control cable with high abrasion and tear resistant properties. Due to its high resistance coolant emultions, it is especially suited for use in the machine, tool making and plant industries as well as in steel industry for difficult and problematic areas. For medium mechanical stress for flexible use with free movement without tensile stress or forced movements in dry, damp and wet rooms and in open air. The high flexibility of this cable type makes it quick and easy to install. Copper screening offers increased electromagnetic compatibility and disturbance-free transmission of signals and impulses

Number and nominal cross- sectional area of conductors	Approximate overall diameter	Approximate net weight of copper	Approximate net weight of cables
$\mathbf{n \times ~ \mathbf { ~ m m }}$		$\mathbf{k g} / \mathbf{k m}$	$\mathbf{k g} / \mathbf{k m}$
$2 \times 0,5$	$\mathbf{m m}$	35,0	44,0
$3 \times 0,5$	5,6	42,0	56,0

$4 \times \overline{0,5}$	6,4	47,0	60,0
$5 \times 0,5$	6,9	56,0	75,0
$7 \times 0,5$	7,6	69,0	97,0
$10 \times 0,5$	9,5	94,0	1330
$12 \times 0,5$	9,8	108,0	158,0
$14 \times 0,5$	10,4	116,0	190,0
$18 \times 0,5$	11,5	145,0	218,0
$21 \times 0,5$	12,2	188,0	252,0
$25 \times 0,5$	13,5	240,0	315,0
$30 \times 0,5$	14,4	295,0	362,0
$36 \times 0,5$	15,6	318,0	447,0
$40 \times 0,5$	17,0	343,0	475,0
$2 \times 0,75$	6,1	40,0	60,0
$3 \times 0,75$	6,4	52,0	67,0
$4 \times 0,75$	7,0	60,0	76,0
$5 \times 0,75$	7,6	71,0	92,0
$7 \times 0,75$	8,2	91,0	131,0
$10 \times 0,75$	10,3	137,0	180,0
$12 \times 0,75$	10,6	142,0	204,0
$14 \times 0,75$	11,5	180,0	226,0
$18 \times 0,75$	12,7	212,0	290,0
$21 \times 0,75$	13,9	246,0	376,0
$25 \times 0,75$	15,2	281,0	413,0
$32 \times 0,75$	17,0	342,0	485,0
2×1	6,5	50,0	66,0
3×1	6,9	60,0	82,0
4×1	7,4	71,0	100,0
5×1	8,0	88,0	128,0
6×1	8,8	97,0	145,0
7×1	8,8	111,0	157,0
8×1	9,8	127,0	198,0
10×1	11,3	150,0	230,0
12×1	11,7	184,0	262,0
14×1	12,4	196,0	302,0
16×1	13,0	209,0	345,0
18×1	13,8	260,0	381,0
21×1	14,9	319,0	480,0
25×1	16,3	349,0	535,0
34×1	18,6	486,0	740,0
$2 \times 1,5$	7,1	63,0	87,0
$3 \times 1,5$	7,5	80,0	102,0
$4 \times 1,5$	8,1	97,0	127,0
$5 \times 1,5$	9,0	119,0	159,0
$7 \times 1,5$	9,9	147,0	207,0
$8 \times 1,5$	11,0	170,0	245,0
$10 \times 1,5$	12,5	193,0	313,0
$12 \times 1,5$	13,1	267,0	340,0
$14 \times 1,5$	13,7	283,0	384,0
$16 \times 1,5$	14,8	315,0	425,0
$18 \times 1,5$	15,5	374,0	480,0
$21 \times 1,5$	16,5	425,0	563,0
$25 \times 1,5$	18,1	526,0	704,0
$34 \times 1,5$	21,2	629,0	870,0
$2 \times 2,5$	8,5	96,0	131,0
$3 \times 2,5$	9,0	144,0	168,0
$4 \times 2,5$	9,8	148,0	194,0
$5 \times 2,5$	10,8	181,0	222,0
$7 \times 2,5$	11,9	255,0	345,0
$10 \times 2,5$	15,5	340,0	462,0

LIYC11Y-JZ, -0Z OIL

$12 \times 2,5$	16,0	441,0	570,0
2×4			
3×4	10,0	120,0	187,0
4×4	10,6	174,0	243,0
5×4	12,8	230,0	310,0
7×4	14,2	273,0	386,0
		316,0	498,0
3×6	12,6		300
4×6	14,2	240,0	333,0
5×6	15,4	305,0	414,0
7×6	17,0	439,0	510,0

